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The problem of universal simulation of the dynamics of a turbulent velocity field 
(universal in the sense of arbitrary values of the Reynolds turbulence number) is 
treated on the basis of the moment model in the second approximation. 
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One of the modern methods in the semiempirical theory of turbulent shear flow is based on 
the use of differential equations for the single-polnt statistical moments of hydrodynamic 
fields. This mathematical apparatus has evolved from the need to simulate the exact equations 
for those moments, for the purpose of their closure. The simulating equations must satisfy 
several necessary conditions, one of them being that they correspond to exact laws of field 
dynamics the simplest (homogeneous and isotropic) form. 

The dynamics of a homogeneous velocity field can be described by a pair of equations, for 
the turbulence energy and for the vorticity 

/ <q~>+2~=o ,  (11 
[ ~ -+ F~ (NRe ' X) e~ / < q2 > = 0. 

The function Fu(NRe,~) in the isotroplc c a s e  is 

Fu (NRe, X)= 7 (S u -}-Sv) Nae, X/15 ] /3,  

S~ = < (Our/OXr) a > / < (OU/OXr) 2 > a/2 (2) 
S,  = 2 v <(OZuJOx~ )z > / < (OuJOx~)Z > 3/2 

The dimensionless moments S u and S~ characterize, respectively, the increase of the vorticity 
of the velocity fluctuation field due to stretching of vortices (Su < 0) and the decrease of 

e u due to viscosity (S~ < 0). 

The degeneracy of homogeneous and isotropic turbulence can be adequately described with 
the aid of the second-order moment model (i), if only the function Fu(NRe,%) is given for all 
possible values of the Reynolds number. In order to determine the function Fu(NRe,X), it is 
necessary to know the dynamics of the third-order two-point moment <UirU'r >, which character- 
izes the interaction of turbulent vortices of various scales (for small but finite values of 
NRe,% this problem has already been solved [I]). Determining Fu(NRe,X) for arbitrary values 
of NRe,I is a problem equivalent to the well-known problem of the function T(k, T) which 
characterizes the transfer of fluctuation energy over the frequency spectrum and which ap- 
pears in the equation of energy spectrum dynamics 

(0/0~ @ 2 vk z) E(k,  ~) = T(k,  T), (3) 

being, moreover, related to S u through the equality 

S~ = - - ( 3 0  I/3/14)S T (k, ~) k2dk / [  S E (k, T)k2dk] a/2 . 
0 0 

Several attempts have been made [2-i0] to determine the function Fu(NRe,X) empirically or 
semiempirlcally from data on the degeneracy of homogeneous turbulence, and, as a result, semi- 
empirical expressions have been proposed for Fu(NRe,k) in the form of functions monotonically 
varying over the range bounded by the two asymptotes NKe,X § 0 and NRe,A + -. The asymptotic 
values Fu(0) and Fu(-) can be found from all well-known limiting invariance relations de- 
scribing the degeneracy of a homogeneous and isotropic velocity field. Indeed, assuming 
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Fig. i. Dependence of the interaction function F u 
on the Reynolds turbulence number NRe,% according 
to data: i) [13]; 2) [14]; 3) [15]; 4) [19]; 5) this 
study; 6) [7]; 7) [i0]; 8) [9]; 9) [8]; 10) approxi- 
mation (8). 

F u = const along the asymptotes, one can put the solution to the system of equations (i) in 
the form 

Fu/Fu--2 (Fu  - -  2) -2 /Fu-2 (T @ T0) -2/Fu-2 (4)  
< q2> = c l  ~ 

w h e r e  c l u a n d T o  a r e  c o n s t a n t s ,  To = < q ~ > / ( F  u -  2 ) e u o  b e i n g  t h e  v i r t u a l  o r i g i n  o f  d e g e n e r a c y  
o f  t h e  v e l o c i t y  f i e l d  a c c o r d i n g  t o  t h e  l aw ( 4 ) .  

Using the Loitsyanskii invariance relation [ii] (for NRe,X << l)<q2>X~ = const and the 
Saffman invariance relation [12] (for NRe.X >> l)<qa>L~ = const (where L u = 5<qa>3/2/eu is 
the scale of vortices with energy contentS, we obtain the asymptotic values of F u 

lim F~ = 14/5, lim f ~  = 11/3. (5) 
NRe" k ~  0 NRe, X~  

It follows from the second of expressions (4) that, with F u = const, the degeneracy of 
<qa> can be represented as a power-law relation 

To) , (6) <q2>=A.(~+ - ~  

i.e., F u can be calculated as F u = 2(n + l)/n with n having been determined by experiment. 
According to expressions (5), mQreover, we have the asymptotic estimates 

lim n ~ 5/2, lim n = 6/5. 
NRe, X ~ 0  NRe, X ~ 

Experimental data [13, 14] for large values of the Reynolds turbulence number (NRe,X > 
40) processed according to relation (6) indicate (Fig. l) that the power exponent n is a con- 
stant (n = 1.3 • 0.15) which corresponds to the value of the interaction function F u = 3.6, 
which also agrees with the second asymptotic estimate, while other data [15] for small values 
of the Reynolds turbulence number (NRe,% < i0) confirm the asymptotic estimate (5) for weak 
turbulence. Note should be taken of the insufficiency of experimental data* for the i0 
NRe,% ~30 range, where function F u varies between its asymptotic values (5). 

Because of the lack of reliable data on the degeneracy of turbulence in the intermediate 
range of NRe,X, great importance is attached to recently developing methods of numerical 
simulation applicable to degeneracy of homogeneous turbulence, particularly high ranking among 
them being the method of direct numerical integration of three-dimensional transient Navier-- 
Stokes equations [16]. Less versatile are spectral function E(k, T), with closure through 
various kinds of hypotheses of phenomenological or statistical nature. Phenomenological 
hypotheses (Obukhov's, Heisenberg's, Karman's, etc. [17]) contain empirical constants, which 
must be determined through comparison of the results of numerical solution with results of 

*The data in [15] for the 10 ~NRe,X ~ 16 range are questionable, inasmuch as they yield values 
for F u which greatly exceed the asymptotic estimate (5) for strong turbulence and thus yield a 
nonmonotonic (peaking) function Fu(NRe,X) in the intermediate range of NRe,%. 

37 



! 

0 ~ 15 2q J2 t 

] 
' eSy ] / 

/ ' 1  
, b 

J,Z / I  E 

0 8 15 2q 52 t 

Fig. 2. Evolution of the asymmetry of arbitrary velocity fluctuations S u (a) and 
of the dimensionless "viscous" moment S~ (b) in time, at various values of the 
Reynolds number NRe: I) NRe = 5; 2) i0; 3) 20; 4) I00; 5) 800. 

experiments. Equations closed through statistical hypotheses (they have been analyzed in 
[18]) generally do not contain empirical constants. Although these latter equations are more 
accurate than equations with closure through phenomenological hypotheses (when the entire range 
of wave numbers is considered), their numerical solution for large values of NRe,X is diffi- 
cult. For illustration, in Fig. 1 are shown the results of numerical simulation of the func- 
tion Fu(NRe l) on the basis of one such model, vlz., the Freitschnan "test field" model, cover- 
ing the 36.~ ~NRe,X <61.5 range [19]. These results cannot be accepted as satisfactory, be- 
cause of their wide deviation from experimental data and also because of the unsatisfactory 
"performance" of this model, according to the authors of [19]j in the intermediate range of 
NRe, X. 

Considering these intricacies of numerical simulation by means of statistical models, we 
dwelled on the solution of Eq. (3) for the energy spectrum with closure through the Helsenberg 
hypothesis (this solution was already solved numerically before [20]) 

0 0 

The constant a is related to the constant c, through the five-thirds power law according to 
the equality 

Ci = (4/3 4/3) ~z -2/3-  

S i n c e  c, = 1.4, according to experimental data [17], we obtain 0.537 for a. With the intro- 
duction of dimensionless quantities 

K = k~,, (o), t - ,~ < u~ > (o), 

(I) (K, t) = 1/4 nk z < u~ } (0))~a (0), 

R = < u~ > ~/~(o) &< (o)h, 

and a change rathe new variables 5 = in (10K), n = 0.01tR, ~($, n) = 0.1~(K, t), Eq. (3) 
becomes 

(o/on + 2 e~l,N~te) q)(~, ~1) = (4 n/R) ~ [((l)'12Iea~12). y e~qJd[--e~6(~,  ~1) ~ ~jl/2 (~, 7]) e ~L2 d~]. (7)  

Equation (7) was solved numerically, with the initial energy spectrum given in the form g(k, 
0)- kge -ka characteristic of undeveloped turbulence. Integration was performed by the impli- 
cit method, stable beyond the dependence on the choice of tlme step (a change to variables 
and i"i resulted in a nonuniform k step, and the time step was selected depending on NRe). The 
integrals on the right-hand side of Eq. (7) were evaluated according to the trapezoidal rule 
with a step A~ = in 1.2, its upper limit having been selected so as to "encompass" the dis- 
sipation range. The derivative on the left-hand side of Eq. (7) was approximated at a step 
Aq = 0.0002NRe(O). The thus calculated evolution of the inertial moment S u and the "viscous" 
dimensionless parameter S~, the latter expressible through the spectral function as 

1} 1} 

38 



Fu 

2p 

~o 

i 

10 20  

_ , ,  . , ,  / 

! 1 / 2  , 

, i I 

I ! 

i I 
Jg - ~ 50 60 

Fig. 3. Evolution of the interaction function F u 
in time, at various values of the Keynolds number 
NRe: i) NRe = 5; 2) i0; 3) 50; 4) 150; 5) 800. 

is shown in Fig. 2 for various initial values of the Reynolds number NRe. The evolution of 
function Fu, calculated from S u and Su, is shown in Fig. 3 and it appears here that the equi- 
librium mode of degeneracy stabilizes at t = I0-20, depending on the value of NRe. The 
dependence of the thus determined equilibrium value of F u on NRe I is shown in Fig. i. A 

approximations [7-9] reveals that, as comparison of the function Fu(NRe,I) with the proposed 
NRe,% becomes smaller, numerical simulation results in faster departure from the state of 
strong turbulence (an analogous behavior reflected by the approximation [i0]) and, at the 
same time, a slower approachment to the state of weak turbulence (which may quite possibly be 
caused by an inadequacy of the Heisenberg model in the intermediate range of the Reynolds 
number). Unfortunately, the lack of reliable experimental data for the range of small and 
intermediate NRe,I values makes it impossible to conclude with sufficient confidence about 
the behavior of the function Fu(NRe,I) in the range of weak turbulence. The only way to check 
the adequacy of such simulation of the function Fu(NRe,%) would probably be the method of 
direct numerical simulation of degenerating homogeneous and isotropic turbulence [16], which 
is feasible exactly in the range of weak turbulence (0 < NRe,% ~ 35). As an alternative 
consistent with experimental data one can use a simple approximation of Fu(NRe,I) in the form 

F~ (NRe, X) = a~ - -  b~/(1 § ~ ~ (l~e ' k), (8) 

where the constants au = 11/3 and b u = 13/15 are found from the asymptotic estimates (5) and 
the constant 8%, must be determined from the requirement of closest agreement with experimental 
data in the intermediate range of NRe,%. Since at this time there are not sufficient experi- 
mental data for intermediate NRe,% values available, a stipulation of a numerical value for 
8 u may be somewhat arbitrary. Nevertheless, according to the graph in Fig. i, the approxima- 
tion (8) with I~ u = 1/150 is entirely adequate for a satisfactory simulation of a degenerating 
homogeneous and isotropic velocity field at any value of NRe,%, i.e., in any stage of 
degeneracy. 

NOTATION 

q = ui, double the kinetic turbulence energy; %au = 59~/Su' Taylor turbulence scale 
squared; s u = ~<(~ui/~Xk )2>, kinetic-energy dissipation function; and NRe,X = ~ Rey- 
nolds turbulence number. 
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FORMATION OF A DEVELOPED TURBULENT FLOW IN A QUADRATIC 

CHANNEL 

V. M. Filippov UDC 532. 542.3 

We present results of experimental investigations of aerodynamic and statistical 
characteristics of the region of natural transition and fully developed turbulent 
flow in quadratic channels. 

An important place in the study of flows in pipes and channels has been the problem of the 
length of the entry segment in which the formation of the hydrodynamically stable state takes 
place. The practical application of the entry segment is most important in shorter pipes. 
The study of the entry segment of a turbulent flow is also important for the general under- 
standing of the mechanism of turbulence formation. 

For a long time, conflicting views were held about the length of the entry segment in 
pipes and channels during the turbulent flow. It was assumed here that the transition from 
the laminar to turbulent flow is practically sudden [1-3]. Principally, new results were 
obtained by Rott who showed that in the case of a minimum Reynolds numbers, the pipe contains 
an extended transition region with an intermittent flow regime [4]. The intermittence of the 
flow was explained by the fact that in the entry segment of the pipe, turbulent locks appears 
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